کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش بینی تغییرات سطح آب زیر زمینی (مطالعه موردی: دشت مروست)

پایان نامه
چکیده

پیش ینی نوسانات سطح آب زیرزمینی، برای برنامه ریزی مناسب تر بویژه در مناطق خشک و نیمه خشک امری ضروری است. روند کلی هیدروگراف معرف آب زیرزمینی دشت مروست، براساس اطلاعات سطح آب زیرزمینی در طی سال های گذشته نزولی و نشانگر وقوع افت مداوم و کاهش ذخایر آب زیرزمینی می باشد. در این تحقیق برای پیش بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل های سری زمانی برای پیش بینی وضعیت سطح آب زیرزمینی استفاده شد. برای مدل سازی اطلاعات سطح آب زیرزمینی در طی سال های 88-1366 استفاده و مدل های مختلف سری زمانی تلفیقی و شبکه عصبی مصنوعی بر داده ها برازش داده شد. کارآیی و دقت مدل های آریما در پیش بینی مقادیر آتی توسط معیار اطلاعاتی آکائیک و جذر مربع میانگین خطاها مورد ارزیابی قرار گرفت. نتایج بررسی حالت های مختلف مدل آریما نشان داد که مدل arima(1,1,0) بهترین برازش را با داده ها دارد. در مدل شبکه عصبی مصنوعی پیش خور پس انتشار خطا از سه تابع آموزشی لونبرگ مارکوآرت، پس انتشار ارتجاعی و شیب توأم مقیاس شده استفاده شد. با توجه به نتایج به دست آمده از بین سه تابع آموزشی، تابع لونبرگ مارکوآرت به عنوان بهترین تابع آموزشی برای پیش بینی سطح آب زیرزمینی انتخاب گردید. برای ارزیابی و انتخاب روش بهتر، بین مدل سری زمانی تلفیقی arima (1,1,0) و مدل شبکه عصبی پیش خور پس انتشار خطا، از آماره های میانگین مربع خطاها، میانگین قدر مطلق خطاها و ضریب بازدهی استفاده شد که مدل شبکه عصبی نسبت به سری زمانی تلفیقی برتری جزئی نشان داد. جلوگیری از مصرف بی رویه آب بخصوص در بخش کشاورزی، مهمترین اقدامی است که باید در شیوه مدیریت بهینه مصرف آب صورت گیرد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش‌بینی تغییرات سطح آب زیرزمینی (مطالعه موردی: دشت مروست)

پیش­بینی نوسانات سطح آب زیرزمینی، برای برنامه­ریزی مناسب­تر به­ویژه در مناطق خشک و نیمه خشک امری ضروری است. در این تحقیق برای پیش­بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل­های سری زمانی و شبکه عصبی استفاده شد. برای مدل­سازی، اطلاعات سطح آب زیرزمینی در طی سال­های 88-1366 استفاده و مدل­های مختلف سری زمانی تلفیقی و شبکه عصبی مصنوعی بر داده­ها برازش داده شد. کارآیی و دقت مدل­های آریما در پیش...

متن کامل

کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش بینی تغییرات سطح آب زیرزمینی (مطالعه موردی: دشت مروست)

پیش­بینی نوسانات سطح آب زیرزمینی، برای برنامه­ریزی مناسب­تر به­ویژه در مناطق خشک و نیمه خشک امری ضروری است. در این تحقیق برای پیش­بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل­های سری زمانی و شبکه عصبی استفاده شد. برای مدل­سازی، اطلاعات سطح آب زیرزمینی در طی سال­های 88-1366 استفاده و مدل­های مختلف سری زمانی تلفیقی و شبکه عصبی مصنوعی بر داده­ها برازش داده شد. کارآیی و دقت مدل­های آریما در پیش...

متن کامل

پیش بینی نوسانات سطح آب زیر زمینی با استفاده از مدل‌های سری زمانی و GMS (مطالعۀ موردی: دشت رفسنجان)

آگاهی از تغییرات بارش به عنوان یک مؤلفۀ هیدرولوژیکی در منابع آب، مهم و ضروری است تا با ارائۀ راه‏کارها و روش‏های مدیریتی مناسب، به بهره‏برداری مناسب از آب‏های زیرزمینی در مناطق خشک و نیمه‏خشک با توجه به کمبود بارش در این مناطق پرداخت. با توجه به اهمیت موضوع، در پژوهش حاضر پیش‏بینی نوسانات سطح آب زیرزمینی تحت تأثیر مدل‏های سری زمانی در دشت رفسنجان صورت گرفت. بارش آینده با استفاده از مدل ARIMA در...

متن کامل

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

متن کامل

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

متن کامل

کاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی

سفره ‏های آب زیرزمینی غالباً به عنوان سیستم ‏هایی با ویژگی ‏های غیرایستا و غیرخطی شناخته می ‏شوند. مدل‏ سازی این سیستم ‏ها و پیش ‏بینی حالت ‏های آینده آن ‏ها نیازمند تشخیص این ویژگی‏ های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی‏ های اشاره‏ شده، به طور گسترده ‏ای در زمینه پیش ‏بینی سری‏ های زمانی هیدرولوژیکی مورد استفاده قرار گرفته ‏است. در این مقاله توانایی مدل ترکیبی ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده منابع طبیعی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023